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Abstract

This paper addresses the problem of detecting, discriminating, and reconstructing sensor faults for nonlinear systems with known model structure
but uncertainty in the parameters of the process. The convenience of the proposed technique lies in the fact that historical operational data and/or a
priori fault information is not required to achieve accurate fault reconstruction except for fixed, short intervals. The overall fault diagnosis algorithm
is composed of a series of nonlinear estimators, which estimates parameter and a fault isolation and identification filter. Parameter estimation and
fault reconstruction cannot be performed accurately since faults and parametric uncertainty interact with each other. Therefore, these two tasks
a is shown that
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re performed at different time scales, where the fault diagnosis takes place at a more frequent rate than the parameter estimation. It
he fault can be reconstructed under some realistic assumptions and the performance of the proposed methodology is evaluated on
hemical process exhibiting nonlinear dynamic behavior.
2005 Elsevier B.V. All rights reserved.
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. Introduction

There is an impetus to reduce downtime, increase safety,
roduct quality, minimize impact on the environment, and
educe manufacturing costs in modern chemical plants through
arly and accurate fault detection and diagnosis[1,2]. The need

or accurately monitoring the process variables and interpret-
ng their variations increases rapidly with the increase in level
f instrumentation in chemical plants. These variations although
ostly due to change in operating conditions can also be directly

inked to faults. Gathering information about the state of a system
nd processing the data for detecting, isolating, and identifying
bnormal readings are important tasks of a fault diagnosis sys-

em[3], where the individual goals are defined as:

Fault detection: a Boolean decision about the existence of
faults in a system.

� Seventh Annual Symposium, Mary Kay O’Connor Process Safety Center,
eyond Regulatory Compliance: Making Safety Second Nature, Reed Arena,
exas A&M University, College Station, TX, October 26–27, 2004.

• Fault isolation: determination of the location of a fault, e
which sensor or actuator is not operating within normal lim

• Fault identification: estimation of the size and type of a fa

Various techniques exist for performing fault diagnosis[4].
A major portion of these techniques are based upon data
past operations in which statistical methods are used to com
the current operating data to earlier conditions of the pro
where the state of the process was known. Although these
niques are easier to implement, they have shortcoming th
analysis relies on static models, which assumes that the pr
operates at a predefined steady-state condition. This is
not the case as the process may undergo throughput chan
exhibit highly nonlinear behavior[5]. Moreover, these metho
cannot estimate the shape and size of the fault accurately
lizing first-principles-based models into the procedure al
for accurate diagnosis even when operating conditions
changed, while the online estimation of model parameters
care of plant-model mismatch. The parameter estimation is
formed using an augmented nonlinear observer[6,15], which
is principally different from often used Extended Kalman fi
∗ Corresponding author. Tel.: +1 979 845 3568; fax: +1 979 845 6446.
E-mail address: hahn@tamu.edu (J. Hahn).

or Extended Luenberger observer. The proposed fault diagnosis
technique itself computes residuals (i.e., the mismatch between
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the measured output and estimated output using the model) for
fault detection[3] and appropriate filters are derived to achieve
fault isolation and identification as well. Since it is not possible
to simultaneously perform parameter estimation and fault detec-
tion, due to the interactions of these two tasks, an approach where
these computations are taking place at different time scales is
implemented. It is shown that fault detection, isolation, and iden-
tification for nonlinear systems containing uncertain parameters
can be performed under realistic assumptions with the presented
approach.

2. Fault diagnosis for LTI systems

Consider a linear, time-invariant system with no input:

ẋ = Ax

y = Cx + fs
(1)

wherex ∈ Rn is a vector of state variables andy ∈ Rm is a vector
of output variables,n the number of states, andm refers to the
number of output variables.A andC are matrices of appropriate
dimensions andfs is the sensor fault of unknown nature with
the same dimensions as the output. Assuming the above sys-
tem is observable, a Luenberger observer for the system can be
designed.

˙̂x = Ax̂ + L(y − ŷ)
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tion and isolation filter (FDIF). A fault detection and isolation
filter becomes a fault identification filter (FIDF) if additionally
the following condition is satisfied[8]:

(5) lim
t→∞(ri(t) − fs,i(t)) = 0, i = 1, 2, 3, . . . , m.

In order to meet the above conditions, the following restric-
tions on the choice ofQ(s) are imposed:

(a) Q(s) �= 0, ∀s ∈ C.

(b) Q(s) = [I − C(sI − (A − LC))−1L]
−1 =

C(sI − A)−1L + I.

Linear, observer-based fault detection, isolation, and identi-
fication schemes work well in the event when accurate funda-
mental model exists for the process over the whole operating
region and if appropriate choices are made forL andQ.

3. Robust fault detection, isolation, and identification

3.1. Problem formulation

Consider a nonlinear system with possibly multiple outputs
of the following form:

ẋ = f (x, θ)
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ŷ = Cx̂
(2)

hereL is the observer gain chosen to make the closed
bserver stable and achieve a desired observer dynam
esidual[3] is defined as:

(t) =
∫ t

0
Q(t − τ)(y(τ) − ŷ(τ)) dτ (3)

hich represents the difference between the estimated o
nd the actual output passed through a filterQ(t). Taking a
aplace transform of Eqs.(1)–(3) results in:

(s) = Q(s)[I − C(sI − (A − LC))−1L]fs(s) (4)

hereQ(t) is chosen such thatQ(s) is aRH∞-matrix [7]. It can
e shown that

1) r(t) = 0 if fs(t) = 0.

2) r(t) �= 0 if fs(t) �= 0.

ndicating that the value ofr(t) predicts the existence of a fa
n the system[7].

In addition, if one uses the dedicated observer schem
hown for a system with three outputs inFig. 1, then the faul
etection system can also discriminate among various
ources:

3) ri(t) = 0 if fs,i(t) = 0, i = 1, 2, 3, . . . , m.

4) ri(t) �= 0 if fs,i(t) �= 0, i = 1, 2, 3, . . . , m.

herei represents theith measurement. A fault detection syst
hat satisfies all of the above conditions is called as a fault d
A

t

s

t

-

y = h(x, θ) + fs
(5)

herex ∈ Rn is a vector of state variables andy ∈ Rm is a vec-
or of output variables. It is assumed thatf(x, θ) is an infinitely
ifferentiable vector field inRn andh(x, θ) is an infinitely dif-

erential vector field inRm. Let θ ∈ Rk be a parameter vect
ssumed to be constant with time but a priori uncertain andfs is

he sensor fault of unknown nature with the same dimensio
he output. The goal of this paper is to estimate the state v
ithout accurate knowledge of the parameter values desc

he process model and under the influence of output disturb
uch that lim

t→∞(x − x̂) = 0, where ˆx is the estimate of the sta

ector,x and to design a set of filtersQ(t) so that the residual
iven by the expressionr(t) = ∫ t

0 Q(t − τ)(y(τ) − ŷ(τ)) dτ have
ll the five properties discussed in Section2.

The main challenge in this research is to overcome the e
f sensor faults and plant-model mismatch on the fault ident

ion. In order to perform accurate state and parameter estim
t is required to have reliable measurements, while at the
ime, an accurate model of the process is desired to recon
he fault. This will be taken into account by performing
arameter estimation and the fault detection at different
cales. Whenever the parameters are estimated, it is as
hat there is either no fault or fault previously identified rem
onstant with time, while the values of the parameters ar
djusted during each individual fault detection. A variety
ifferent techniques exist for designing nonlinear closed-
bservers[9–13]. However, since the class of problems un

nvestigation includes parametric uncertainty it would be na
o address these issues through a parametric approach ins
he often used extended Kalman filter or extended Luenb
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Fig. 1. Schematic of dedicated observer scheme (DOS) for a system with three measurements.

observer. In this paper, authors use an estimator design method-
ology from their previous work[6,15]. The following subsection
briefly discusses parametric approach-based estimator design
methodology.

3.2. Observer design methodology

A nonlinear system given by Eq.(5) can be expressed by
considering parameters as augmented states of the system:(

ẋ

θ̇

)
=
(

f (x, θ)

0

)

y = h(x, θ) + fs

(6)

and with a change of notation

x̄ =
(

x

θ

)
, f̄ (x, θ) =

(
f (x, θ)

0

)
(7)

this results in the following system

˙̄x = f̄ (x̄)

y = h(x̄) + fs
(8)

Furthermore, assume that each componentθi of the parameter
vector

θ

c
w own

Π
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p
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In order to proceed, it is assumed that the augmented system
is observable over the entire hyperrectangle-like setΠ and the
equilibrium points corresponding to these parameters values. It
is then possible to design an observer for the augmented system
of the following form:(

˙̃x
˙̃θ

)
=
(

f (x̃, θ̃)

0

)
+ L̄(x̃, θ̃)(y − ŷ)

ŷ = h(x̃, θ̃) + fs

(11)

where x̃ is the estimate ofx, θ̃ the estimate ofθ and L̄(x̃, θ̃)
is a suitably chosen nonlinear observer gain. The synthesis
methodology for the aforementioned nonlinear observer gain
is presented in an earlier paper by the current authors[6]. Fur-
ther, research on enhancing the convergence rates of the above
mentioned estimator is presented in[15]. Also, note that the
observer makes use of the assumption that the measurement
fault is known from an earlier identification of the fault. When
the observer is computed for the first time, it has no knowledge
about possible sensors faults and assumes that no sensor fault
was initially present.

3.3. Fault detection

The fault detection aims to determine whether a fault has
o

i rma-
t fined
a
fi

•
•

b ired
o

:=[θ0, θ1, . . . , θk−1] (9)

an vary independently of the other components and eachθi lies
ithin an interval where the upper and lower bounds are kn

:={θ : θ−
i ≤ θi ≤ θ+

i , i = 0, 1, 2, . . . , k − 1} (10)

Also, letθ = θss∈ Π be a vector of constant, a priori unkno
arameters and (xss, θss) be an equilibrium point of Eq.(6). The
ugmented system needs to be observable in order to des
bserver, which can also estimate the values of the param
he sufficient condition for local observability of the syst
iven by Eq.(6) is discussed with details in an earlier paper[6].
an
s.

ccurred in the system. It can be deduced that lim
t→∞(x − x̂) �= 0

n the presence of sensor faults. In order to obtain the info
ion about faults from the system a residual needs to be de
sr(t) = ∫ t

0 Q(t − τ)(y(τ) − ŷ(τ)) dτ, whereQ(t) is any stable
lter. It can be verified that

lim
t→∞r(t) = 0 if fs(t) = 0.

lim
t→∞r(t) �= 0 if fs(t) �= 0.

Additional restrictions on the class of stable filtersQ(t) will
e imposed in the following sections in order to satisfy des
bjectives.
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3.4. Fault isolation

Fault isolation is analogous with discriminating among var-
ious sources of faults and its computation imposes additional
restrictions on the choice of the filterQ(t). In order to per-
form fault isolation, the augmented system given by Eq.(6) is
assumed to be invidually observable through each of the outputs
y ∀ θss∈ Π. This requirement for fault isolation is mandatory for
the existence of a fault isolation filter[8], and hence does not
pose a stringent condition for using the presented approach.

To achieve fault detection as well as isolation, the proposed
approach uses a series of dedicated nonlinear observers as shown
in Fig. 1. In this method as many residuals are generated as the
number of measurable outputs. It can be verified that

• lim
t→∞ri(t) = 0 if fs,i(t) = 0

• lim
t→∞ri(t) �= 0 if fs,i(t) �= 0 i = 1, 2, 3, . . . , m.

for an appropriately chosen filterQ(t).

3.5. Fault identification

In order to estimate the shape and size of the fault, the resid-
uals have to meet the following objective:
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before onset of faults in the original process. Additionally, the
parameters are updated periodically by the augmented observer
[6] in order to take process drifts into account.

The overall fault diagnosis system performs parameter esti-
mation and fault reconstruction at different time scales, where
the fault identification takes place at a higher frequency than
parameter estimation. It is assumed that parameter values do
not change during the fault identification, while the faults are
assumed constant during parameter estimation.Fig. 2illustrates
this two-time scale behavior, where stages 2 and 3 are repeated
alternatively throughout the operation and the time between the
start of each stage is decided by the nature of the process. How-
ever, in general, the parameter estimation is only performed
sporadically and requires only short periods of time, so that the
fault can be identified for the vast majority of the time.

4. Case study

4.1. Fault diagnosis of a reactor with uncertain parameter

In this section, the main aspects of the proposed fault diag-
nosis methodology is illustrated through numerical simulations
of a nonisothermal CSTR with coolant jacket dynamics, where
the following exothermic irreversible reaction between sodium
thiosulfate and hydrogen peroxide is taking place[14].
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lim→∞(ri(t) − fs,i(t)) = 0 i = 1, 2, . . . , m

Since a dedicated nonlinear observer scheme is utilized
roposed approach, it remains to choose a suitable stable
(t) to meet all the conditions for fault detection, isolation,

dentification. It was shown in Section2 that an appropriat
hoice ofQ(t) for a linear time, invariant system described
q.(1) is given by:

(s) = C(sI − A)−1L + I

hereQ(s) is the Laplace transform of the filterQ(t). In this
aper, authors use a lower-dimensional observer[6], which does
ot perform parameter estimation but only estimates the s
fault identification filter follows from it directly.
In the presence of unknown sensor faults, the estima

he parameter may diverge from the actual value, and t
ore the stability of the overall fault diagnosis system ca
e guaranteed. To overcome this problem, parameter es

ion and fault reconstruction are performed at different
cales and it is assumed that the algorithm is initialized w
o sensor fault occurs until a timeto such that for someε > 0,
|y − ŷ||2 ≤ ε∀to ≥ 0. The sensor fault is of the following form

s(t) = f (t)S(t − to), S(t − to) =
{

1 : t ≥ to

0 : t < to

The above assumption ensures that the parameter es
onverges to its actual value with a desired accuracy:

|θss− θ̃||2 ≤ η, η(ε) > 0 (12)
e
r

s.

f
-

-

te

Na2S2O3 + 4H2O2 → Na2S3O6 + Na2SO4 + 4H2O (13)

The capital letters A–E are used to denote the chemical
ounds Na2S2O3, H2O2, Na2S3O6, Na2SO4, and H2O, respec

ively. The reaction kinetic law is reported in the literature to
14]:

rA = k(T )CACB = (ko + �ko) exp

(−E + �E

RT

)
CACB

here�ko and �E represent parametric uncertainties in
odel. A mole balance for species A and energy balances f

eactor and the cooling jacket result in the following nonlin
rocess model:

dCA

dt
= F

V
(CAin − CA) − 2k(T )C2

A

dT

dt
= F

V
(Tin − T ) + 2

(−�H)R + �(−�H)R
ρcp

k(T )C2
A

− UA + �UA

Vρcp
(T − Tj)

dTj

dt
= Fw

Vw
(Tjin − Tj) + UA + �UA

Vwρwcpw
(T − Tj)

(14)

hereF is the feed flow rate,V the volume of the reactor,CAin the
nlet feed concentration,Tin the inlet feed temperature,Vw the
olume of the cooling jacket,Tjin the inlet coolant temperatur
w the inlet coolant flow rate,cp the heat capacity of the reacti
ixture,cpw the heat capacity of the coolant,ρ the density o

he reacting mixture,U the overall heat transfer coefficient, a
is the area over which the heat is transferred. The pro

arameters values used for simulations are listed in an e
aper[6]
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Fig. 2. Schematic fault identification for systems with time-varying parameters.

Here,�ko, �E, �(�H), and�UA represent uncertainty in
the pre-exponential factor, the activation energy, the heat of
reaction, and the overall heat transfer rate, respectively. When
�ko, �E, �(�H), and �UA are all chosen equal to zero,
the nominal nonlinear model exhibits multiple steady states,
of which the upper steady state (i.e.,CAss= 0.0192076 mol/L;
Tss= 384.005 K;Tjss= 371.272 K), is stable and chosen as the
point of operation. It has been confirmed from simulations that
the effect of uncertainty of activation energy on the behavior of
the system is higher than the other parameters.

In order to validate the performance of the presented
approach, it is in a first step compared to the results derived from
a fault detection scheme based upon a Luenberger observer for
the process under consideration. For now, the process param-
eters are assumed to be known. The system matrices obtained
by linearizing the process model(14)around the chosen steady
state are




ĊA

Ṫ

Ṫj


 =




−123.74997 −.073473 0

17408.48619 6.37994 2.85714

0 28.57143 −31.57143






CA

T

Tj




y1 = T

y2 = Tj

(15)

W t
i vers
f
e
− en

of the reaction temperature is

L1 =




−53.912

1.55E+ 3

5.79E+ 5




and the gain corresponding to the coolant temperature is found
to be

L2 =




1.7E+ 2

2.7E+ 4

1.55E+ 3




Both reaction temperature and coolant temperature measure-
ments have zero mean white noise with Gaussian distribution
and are induced with an additive sensor fault signal whose shape
and size are shown inFig. 3.

Residuals generated by the technique based upon a Luen-
berger observer with mismatch in the initial conditions are shown
in Fig. 4. ComparingFigs. 3 and 4, it is concluded that the
Luenberger observer-based fault diagnosis scheme is able to
isolate and identify the approximate nature of the fault in each
sensor. Similar simulations have been carried out where the pro-
cess model includes uncertainties (�ko = 5% ko, �E = 6% E,
�(�H) = 5%�H, and�UA = 5%UA).

Fig. 5shows the residual generated for the fault signal shown
in Fig. 3 for one specific case of parametric uncertainty. The
e seen
f ost
p reted
a fect of
u osis
ith λ(A) ={−112.94,−1.37,−34.63}. For performing faul
solation and identification, it is required to design obser
or each of the two measurements as shown inFig. 1 and the
igenvalues of the closed loop observers are placed at{−6.85,
6.86,−6.87}. The observer gain calculated for a measurem
 t

ffect of model uncertainty on the fault diagnosis can be
romFig. 5that while the shape of the fault is reproduced alm
erfectly, the bias in the residuals results can be misinterp
s a response to a step fault in the sensor. To quantify the ef
ncertainty on fault detection, simulations of the fault diagn
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Table 1
Monte Carlo simulation (with model uncertainty)

Scenarios Thresholds

Luenberger observer with model uncertainty Presented approach with model uncertainty

1 2 3 4 1 2 3 4

00 3.92 9.51 35.80 67.52 100 100 100 100
01 24.01 8.82 44.98 16.80 100 100 100 96.45
10 55.38 55.81 42.20 39.04 89.92 100 100 100
11 76.25 58.18 44.36 16.32 100 100 100 100

Fig. 3. Reactor and coolant temperature fault signal.

scheme based upon the Luenberger observer are performed for
a sufficiently large number of scenarios (10,000) which include
a random occurrences of faults in either or both the sensors
as well as randomly chosen parametric uncertainty within the
given intervals in order to determine the overall percentage of
successfully identifying one or all the scenarios. The scenarios

Fig. 4. Reactor and coolant temperature residuals through Luenberger observ
s

denoted by “00”, “01”, “10”, and “11” inTable 1stand for no
faults in both sensors, no fault in reaction temperature sensor
and fault in coolant temperature sensor, fault in reaction tem-
perature sensor and no fault in coolant temperature sensor, and
fault in both sensor, respectively. Step faults starting at timet = 0
and of magnitude 5 K were added to the sensors. Various thresh-
olds are selected to determine whether or not a fault occurred in
either of the sensors and the fault isolation scheme (based upon
a Luenberger observer) is tested with Monte Carlo simulations
where the parametric uncertainty is chosen at random within the
given bounds. To explain this scheme, the scenario identifies the
condition where no faults occur in both sensors for a chosen
thresholdα if the following condition is satisfied:

(a) if time average of1
Tf

∫ Tf
0 |rc(t)| dt < α, whererc(t) denotes

the coolant temperature residual;
(b) if time average of1

Tf

∫ Tf
0 |rT(t)| dt < α, whererT(t) denotes

the reactor temperature residual.

where [0,Tf ] is the interval over which the time average is cal-
culated.

The criteria used for the other (“01”, “10”, “11”) scenar-
ios are chosen accordingly.Table 1summarizes the percent-
age of successfully identifying the correct scenario using the
fault isolation scheme in the presence of random uncertainties

F bserver
s
cheme (no model uncertainty).

erig. 5. Reactor and coolant temperature residuals through Luenberger o
cheme (with model uncertainty).
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in all the parameters within the range described above. These
results show that the parametric uncertainty can have a strong
effect on robustness properties of a fault diagnosis scheme, and
hence requires techniques that can cope with model uncertainty.
The nonlinear fault detection scheme presented in this work
is applied to overcome these limitations. Since the effect of
uncertainty in the activation energy is greater than the other
parameters for fault diagnosis purpose, uncertainty in the activa-
tion energy aloneΠ: ={E: = 0.94Ess≤ E ≤ 1.06Ess} is consid-
eredEss= 76534.704 J/mol. However, while the design is solely
performed based upon uncertainty in this one parameter, the
evaluation of the fault diagnosis scheme will consider uncer-
tainty in all of the parameters to compare it to the Luenberger
observer scheme.

Using the presented technique and applying it to a system
with uncertainty in all of the model parameters, it is found that
estimate of the activation energy converges to its true value
after 8.4 min in the absence of sensor faults. The assumption
that there is no initial sensor fault is a reasonable assumption
since one would like to have a certain level of confidence in
the measurements before a fault diagnosis procedure is invoked.
The coolant and reactor temperature residuals generated by the
proposed fault identification techniques for the faults inFig. 3
are presented inFig. 5. It is apparent that the residuals con-
verge to the values of the faults even when the uncertainties in
the model parameters are a priori unknown. Additionally, the
l con-
s

ainty
i 00%
s
c berger
o d tak-
i
� ts
a ed
n eme
p n all
t ation
e osis
w gned
f fault
d ty in
a an
i cting
a

4
t

slow
c heat
t cata
l f the
p othe
m l
p imu

Fig. 6. Reactor and coolant temperature residual signal through presented
scheme (with model uncertainty).

lations that activation energy affects the system behavior more
than any other parameters, and hence only activation energy is
assumed to change with time.Fig. 7shows the plot of the acti-
vation energy and its estimate over the simulated time span and
Fig. 8presents the fault signalfs(t) that is affecting the sensors.
The corresponding coolant and reactor temperature residuals
generated by the proposed fault identification technique are
shown inFig. 9. The time period during which the parameter
is identified within acceptable limits ranges fromt = 0–6 min.
These times were determined by comparing the measured out-
put and the predicted output. The first long time period during
which fault detection and identification is invoked ranges from
10 to 415 min. The parameter is adapted from 415 to 422 min.
This is followed by another fault detection period ranging from
t = 422 to 782 min. It can be concluded fromFig. 9that the fault
identification scheme is effective even in the presence of time-
varying uncertain parameters. It should be noted that the system
ocation, shape, and magnitude of the faults are correctly re
tructed and sensor noise is filtered.

Since the performed simulation has only used uncert
n the activation energy, Monte Carlo simulations have a 1
uccess rate for the scenarios considered inTable 1. In order to
ompare the presented fault detection scheme to the Luen
bserver-based one, Monte Carlo simulations are performe

ng uncertainty in all the parameters (�ko = 5%ko, �E = 6%E,
(�H) = 5%�H, and�UA = 5%UA) into account. The resul
re summarized inTable 1and clearly show that the propos
onlinear fault detection, isolation, and identification sch
erforms very well even under the influence of uncertainty i

he model parameters. The assumption that only the activ
nergy significantly affects the performance of fault diagn
as a good one, since the fault identification was only desi

or uncertainty in this parameter; nevertheless, accurate
iagnosis is possible even under the influence of uncertain
ll the other parameters. Additionally, it is inferred that it is

mportant task to choose an appropriate threshold for dete
fault (Fig. 6).

.2. Fault diagnosis of a reactor with uncertain and
ime-varying parameters

Often times processes in chemical industry exhibit a
hange in model parameters with time, e.g., fouling in
ransfer equipment, change in activation energy due to
yst deactivation, etc. In this section, the performance o
roposed fault diagnosis scheme is evaluated for the nonis
al CSTR problem as introduced in Section4.1but with mode
arameters varying with time. It has been shown through s
-

r-

- Fig. 7. Activation energy change with time.
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Fig. 8. Reactor and coolant temperature fault signal.

Fig. 9. Reactor and coolant temperature residual signal through presente
scheme (with time-varying parametric uncertainty).

would not work as well if the parameters are not periodically
re-identified, as can be seen fromFig. 9during the time period
just before 415 min.

5. Conclusions

A new observer-based fault diagnosis scheme for nonlinea
dynamic systems with parametric uncertainty was presented
This approach is centered around two main components: th
design of an appropriate fault detection, isolation and identi-
fication filter for reconstructing the location and nature of the
fault and implementation of the aforementioned algorithm with
two-time scales. The estimator design for state and parame
ter estimation was performed based upon authors’ prior work
[6,15]. The fault isolation and identification filter was designed
based upon a linearization of the nonlinear model at each tim

step. Repeatedly performing linearization of the model does not
pose a problem in practice since it is computationally inexpen-
sive.

Since it is not possible to simultaneously perform parameter
estimation and fault detection, these two tasks were implemented
at different time scales. The parameters were estimated at peri-
odic intervals where the fault was either assumed to be zero or
known and constant, whereas the fault detection scheme was
invoked at all times with the exception of the short periods used
for parameter estimation.

The performance of the proposed fault diagnosis method was
evaluated using a numerical example of an exothermic CSTR
and by performing Monte Carlo simulations on a bounded set of
parametric uncertainties for a series of faults in both of the avail-
able measurements. The faults were reconstructed correctly even
in the presence of severe uncertainties in the model parameters
and measurement noise.
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