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Abstract

This paper addresses the problem of detecting, discriminating, and reconstructing sensor faults for nonlinear systems with known model struc
but uncertainty in the parameters of the process. The convenience of the proposed technique lies in the fact that historical operational data anc
priori fault information is not required to achieve accurate fault reconstruction except for fixed, short intervals. The overall fault diagnitisis alg
is composed of a series of nonlinear estimators, which estimates parameter and a fault isolation and identification filter. Parameter estimation
fault reconstruction cannot be performed accurately since faults and parametric uncertainty interact with each other. Therefore, these two t
are performed at different time scales, where the fault diagnosis takes place at a more frequent rate than the parameter estimation. It is show:
the fault can be reconstructed under some realistic assumptions and the performance of the proposed methodology is evaluated on a simt
chemical process exhibiting nonlinear dynamic behavior.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Fault detection; Fault isolation; Fault reconstruction; State and parameter estimation; Hurwitz stability; Kharitonov’s theorem

1. Introduction e Fault isolation: determination of the location of a fault, e.g.,

which sensor or actuator is not operating within normal limits.

There is an impetus to reduce downtime, increase safety, Faultidentification: estimation of the size and type of a fault.
product quality, minimize impact on the environment, and

reduce manufacturing costs in modern chemical plants through Various techniques exist for performing fault diagndis

early and accurate fault detection and diagnis]. The need A major portion of these techniques are based upon data from
for accurately monitoring the process variables and interpret- Jor p q P

ing their variations increases rapidly with the increase in IeveEaSt operations in which statistical methods are used to compare

of instrumentation in chemical plants. These variations althou he current operating data to earlier conditions of the process
P ' gwhere the state of the process was known. Although these tech-

mostly due to change in operating conditions can also be directlxi Les are easier to implement. thev have shortcoming that the
linked to faults. Gathering information about the state of a system d P » they 9

and processing the data for detecting, isolating, and iolentifyinanaIyS|s relies on static models, which assumes that the process

abnormal readings are important tasks of a fault diagnosis Syg_perates at a predefined steady-state condition. This is often

tem[3], where the individual goals are defined as: not _th_e case as th_e process may undergo throughput changes or
exhibit highly nonlinear behavidb]. Moreover, these methods
. o . cannot estimate the shape and size of the fault accurately. Uti-
o Fault detection: a Boolean decision about the existence Qqfzing first-principles-based models into the procedure allows
faults in a system. for accurate diagnosis even when operating conditions have
changed, while the online estimation of model parameters takes
Er— _ care of plant-model mismatch. The parameter estimation is per-
" Seventh Annual Symposium, Mary Kay O’Connor Process Safety Centerformed using an augmented nonlinear obse{(iet5] which
Beyond Regulatory Compliance: Making Safety Second Nature, Reed ArenaS incinally diff tf ft. d Extended K ’I filt
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* Corresponding author. Tel.: +1 979 845 3568; fax: +1 979 845 6446. or Extended Luenberger observer. The proposed fault diagnosis
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the measured output and estimated output using the model) ftion and isolation filter (FDIF). A fault detection and isolation
fault detectior{3] and appropriate filters are derived to achievefilter becomes a fault identification filter (FIDF) if additionally
fault isolation and identification as well. Since it is not possiblethe following condition is satisfief8]:

to simultaneously perform parameter estimation and fault detec-

tion, due to the interactions of these two tasks, an approachwhe(g) lim (r;(r) — fsi(1)) =0, i=1,2,3,...,m.

these computations are taking place at different time scales is e

implemented. Itis shown that fault detection, isolation, andiden- |, order to meet the above conditions, the following restric-
tification for nonlinear systems containing uncertain parametergons on the choice af(s) are imposed:

can be performed under realistic assumptions with the presented

approach. (@) 0(s) £0. VseC.
(b) O(s) =1 — C(sT— (A — LO)™2L] * =

2. Fault diagnosis for LTI systems C(sI — A)_l L+1.

Consider a linear, time-invariant system with no input: Linear, observer-based fault detection, isolation, and identi-

x = Ax fication schemes work well in the event when accurate funda-

y=Cx+ fs 1) mental moqlel exists _for the process over the whole operating
region and if appropriate choices are madelfandQ.

wherex € R" is a vector of state variables apd R" is a vector

of output variablesy the number of states, amarefers to the 3. Robust fault detection, isolation, and identification

number of output variabled.andC are matrices of appropriate

dimensions angs is the sensor fault of unknown nature with 3.7. Problem formulation

the same dimensions as the output. Assuming the above sys-

tem is observable, a Luenberger observer for the system can be Consider a nonlinear system with possibly multiple outputs

designed. of the following form:

* A)f +L(y—3) @ *° f(x, 6) )

y=Cx y=h(x,0)+ fs

whereL is the observer gain chosen to make the closed loowvherex € R" is a vector of state variables ape R™ is a vec-

observer stable and achieve a desired observer dynamics. tAr of output variables. It is assumed tifiat, 6) is an infinitely

residual3] is defined as: differentiable vector field iR" andhi(x, 0) is an infinitely dif-
‘ ferential vector field inR”. Let # € R* be a parameter vector
r(t) = / o@t — 1)(y(r) — ¥(r))dr (3) assumed to be constant with time but a priori uncertairyaisd
0 the sensor fault of unknown nature with the same dimensions as

which represents the difference between the estimated outptite output. The goal of this paper is to estimate the state vector
and the actual output passed through a fill§r). Taking a  without accurate knowledge of the parameter values describing
Laplace transform of Eq$1)<3) results in: the process model and under the influence of output disturbances
H5) = Q)T — C(sT — (A — LOY)-LL] fuls) @) such that lim(x — X) = 0, wherex'is the estimate of the state

B S vector,x and to design a set of filtexd(¢) so that the residuals,
whereQ(¢) is chosen such th&(s) is aRH..-matrix[7]. It can  given by the expressiorfr) = fé o(t — 7)(y(r) — y(r)) dr have

be shown that all the five properties discussed in Sectin

The main challenge in this research is to overcome the effect
Q) r(r) =0 if fg(r) = 0. of sensor faults and plant-model mismatch on the faultidentifica-
(2) r(r) #0 if f5(r) # 0. tion. In order to perform accurate state and parameter estimation,

it is required to have reliable measurements, while at the same

indicating that the value of(¢) predicts the existence of a fault time, an accurate model of the process is desired to reconstruct
in the systenj7]. the fault. This will be taken into account by performing the

In addition, if one uses the dedicated observer scheme gmrameter estimation and the fault detection at different time
shown for a system with three outputshig. 1, then the fault scales. Whenever the parameters are estimated, it is assumed
detection system can also discriminate among various fauthat there is either no fault or fault previously identified remains
sources: constant with time, while the values of the parameters are not
adjusted during each individual fault detection. A variety of
different techniques exist for designing nonlinear closed-loop
observerd9-13] However, since the class of problems under
investigation includes parametric uncertainty it would be natural
wherei represents thgh measurement. A fault detection systemto address these issues through a parametric approach instead of
that satisfies all of the above conditions is called as a fault dete¢he often used extended Kalman filter or extended Luenberger

() ri) =0 if fs;(t)=0, i=1,23,...,m.
(@) ri() #0 if fs;i() #0, i=123,....m.

9 &y Iy
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Fig. 1. Schematic of dedicated observer scheme (DOS) for a system with three measurements.

observer. In this paper, authors use an estimator design method- In order to proceed, it is assumed that the augmented system

ology from their previous wor6,15]. The following subsection is observable over the entire hyperrectangle-likelsetnd the

briefly discusses parametric approach-based estimator desigquilibrium points corresponding to these parameters values. It

methodology. is then possible to design an observer for the augmented system
of the following form:

3.2. Observer design methodology i G, é) _ )
. . x| = + L(x,0)(y — )
A nonlinear system given by E@5) can be expressed by \ 0 0 (11)
considering parameters as augmented states of the system: $ = h(%, g) + fs
x\ _ [ f&6) wherex is the estimate of, & the estimate of and L(%, 6)
0 0 (6) is a suitably chosen nonlinear observer gain. The synthesis
v = h(x, ) + f methodology for the aforementioned nonlinear observer gain
’ S is presented in an earlier paper by the current autfgdrs-ur-
and with a change of notation ther, research on enhancing the convergence rates of the above
mentioned estimator is presented[irb]. Also, note that the
— (X = _ f(x,0) observer makes use of the assumption that the measurement
x= o [, 0) = (7 : e
0 0 fault is known from an earlier identification of the fault. When

_ _ _ the observer is computed for the first time, it has no knowledge
this results in the following system about possible sensors faults and assumes that no sensor fault
was initially present.

x= f(x) @
y=h@x)+ fs 3.3. Fault detection
Furthermore, assume that each compo#égsftthe parameter
vector The fault detection aims to determine whether a fault has
occurred in the system. It can be deduced that (km x) £ 0
0:=[60, 61, - - ., Or—1] (9) : (=00 | .
HRC in the presence of sensor faults. In order to obtain the informa-

can vary independently of the other components and @digs ~ tion about faults from the system a residual needs to be defined

within an interval where the upper and lower bounds are know?S” (1) = Jo Gt — 0)(y(r) — ¥(7)) dr, whereQ(7) is any stable
filter. It can be verified that

M={0:67 <6; <6, i=012.. k-1 (10)

Also, letd =6ss e IT be a vector of constant, a priori unknown * [I;ngor(t) =0 !f o) =0.
parameters ands, 6s9 be an equilibrium point of Eq6). The ~ ® Nim (1) # 0 if fs(r) # 0.
augmented system needs to be observable in order to design an
observer, which can also estimate the values of the parameters. Additional restrictions on the class of stable filtg&) will
The sufficient condition for local observability of the system be imposed in the following sections in order to satisfy desired
given by Eq(6) is discussed with details in an earlier pafi§t  objectives.
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3.4. Fault isolation before onset of faults in the original process. Additionally, the
parameters are updated periodically by the augmented observer
Fault isolation is analogous with discriminating among var-[6] in order to take process drifts into account.
ious sources of faults and its computation imposes additional The overall fault diagnosis system performs parameter esti-
restrictions on the choice of the filt&?(¢). In order to per- mation and fault reconstruction at different time scales, where
form fault isolation, the augmented system given by @)is  the fault identification takes place at a higher frequency than
assumed to be invidually observable through each of the outpufsarameter estimation. It is assumed that parameter values do
yV6ss€ I1. This requirement for fault isolation is mandatory for not change during the fault identification, while the faults are
the existence of a fault isolation filt¢8], and hence does not assumed constant during parameter estimakimn 2illustrates
pose a stringent condition for using the presented approach. this two-time scale behavior, where stages 2 and 3 are repeated
To achieve fault detection as well as isolation, the proposedlternatively throughout the operation and the time between the
approach uses a series of dedicated nonlinear observers as shastert of each stage is decided by the nature of the process. How-
in Fig. 1 In this method as many residuals are generated as thever, in general, the parameter estimation is only performed
number of measurable outputs. It can be verified that sporadically and requires only short periods of time, so that the
fault can be identified for the vast majority of the time.

° tlim ri()=0 if fsi(r)=0
—00

o limri()#0 iffsi()#0 i=123....m 4. Case study
—00

4.1. Fault diagnosis of a reactor with uncertain parameter
for an appropriately chosen filt&(r).
In this section, the main aspects of the proposed fault diag-
3.5. Fault identification nosis methodology is illustrated through numerical simulations
of a nonisothermal CSTR with coolant jacket dynamics, where

In order to estimate the shape and size of the fault, the residbe following exothermic irreversible reaction between sodium
uals have to meet the following objective: thiosulfate and hydrogen peroxide is taking pléb4].

l"m ri() — fsi() =0 i=12....m 2NapS;03 + 4H202 — NapS30g6 + Nap SO + 4H,0 (13)
—00

The capital letters A—E are used to denote the chemical com-

Sinceadedicatehd _nonline_ar obseI:verschem.e islutilizedI mftI ounds NaS;03, HyOy, NapSsOs, Nap SOy, and HO, respec-
proposed approach, it remains to choose a _Su't"’}b € s'tab e filt {/ely. The reaction kinetic law is reported in the literature to be
Q(7) to meet all the conditions for fault detection, isolation, and 14]

identification. It was shown in Sectioh that an appropriate
i i ime. invari i —E+ AE
choice 0fQ(7) for a linear time, invariant system described by _, _ 4 (7)c, g = (ko + Ako) exp( ) CaCa
Eq. (1) is given by: RT
0(s) = C(sI — AL+ 1 where Ak, and AE represent parametric uncertainties in the
model. A mole balance for species A and energy balances for the
whereQ(s) is the Laplace transform of the filtgd(z). In this  reactor and the cooling jacket result in the following nonlinear
paper, authors use a lower-dimensional obsd6lewhich does  process model:
not perform parameter estimation but only estimates the state%cA F
A fault identification filter follows from it directly. = —(Cain — Ca) — 2k(T)C,§

In the presence of unknown sensor faults, the estimate o dr v (—AH)g + A(—AH)
the parameter may diverge from the actual value, and there? = V(Tin —-T)+2 R Rk(T)Cﬁ
fore the stability of the overall fault diagnosis system cannot d pPep (14)
be guaranteed. To overcome this problem, parameter estima-  _ UA+ AUA(T -T))
tion and fault reconstruction are performed at different time Vocp
scales and it is assumed that the algorithm is initialized wherdT;  Fy UA + AUA

o = (T — T)) + (T = T))

no sensor fault occurs until a timg such that for some >0, dr Vi VivowCpw

[ly — Jll2 < eVt > 0. The sensor fault is of the following form: ,
whereF'is the feed flow ratéy/ the volume of the reactofai, the

inlet feed concentratior¥j, the inlet feed temperatur&,, the
l:t>1 volume of the cooling jackefjj, the inlet coolant temperature,
S0 =108 —10).  St—10)=1 . _ o Fy the inlet coolant flow rate:, the heat capacity of the reacting
mixture, cpw the heat capacity of the coolant,the density of
The above assumption ensures that the parameter estimdltee reacting mixturel/ the overall heat transfer coefficient, and
converges to its actual value with a desired accuracy: A is the area over which the heat is transferred. The process
- parameters values used for simulations are listed in an earlier
[ss—0ll2<m, n(e) >0 (12)  paper6]
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1) No fault present 1) No parameter updating 1) Fault assumed onstant
2) Parameter estimation 2) Fault identification (value from previous
3) Short time period assuming the knowledge

£ th 4 identification)
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Fig. 2. Schematic fault identification for systems with time-varying parameters.

Here, Aky, AE, A(AH), and AUA represent uncertainty in of the reaction temperature is
the pre-exponential factor, the activation energy, the heat of
reaction, and the overall heat transfer rate, respectively. When —53912
Ako, AE, A(AH), and AUA are all chosen equal to zero, L1 = | 1.55E+3
the nominal nonlinear model exhibits multiple steady states, 5.79E+5

of which the upper steady state (i.€4s5=0.0192076 mol/L; ) . .
Tss= 384.005 K:Tiss= 371.272K), is stable and chosen as the@nd the gain corresponding to the coolant temperature is found
. 1L . )

point of operation. It has been confirmed from simulations thaf© Pe
the effect of uncertainty of activation energy on the behavior of 17E+2
the system is higher than the other parameters. Lo— | 27E+4

In order to validate the performance of the presented
approach, itis in afirst step compared to the results derived from
a fault detection scheme based upon a Luenberger observer for Both reaction temperature and coolant temperature measure-
the process under consideration. For now, the process parafents have zero mean white noise with Gaussian distribution
eters are assumed to be known. The system matrices obtainggd are induced with an additive sensor fault signal whose shape
by linearizing the process modgl4) around the chosen steady and size are shown ifig. 3.
state are Residuals generated by the technique based upon a Luen-

] berger observerwith mismatchin theinitial conditions are shown

Ca —12374997 -.073473 0 Ca in Fig. 4 ComparingFigs. 3 and 4it is concluded that the

T | = | 1740848619 637994 285714 T Luenberger observer-based fault diagnosis scheme is able to

Tj 0 2857143 —3157143| | T isolate an_d ?dent_ify the. approximate naturg of the fault in each

sensor. Similar simulations have been carried out where the pro-
n=T cess model includes uncertaintieSkf =5% ko, AE=6% E,
2=1T; A(AH)=5% AH, andAUA = 5% UA).

(15) Fig. 5shows the residual generated for the fault signal shown

in Fig. 3 for one specific case of parametric uncertainty. The
With A(A)={—112.94,—1.37,—34.63. For performing fault effect of model uncertainty on the fault diagnosis can be seen
isolation and identification, it is required to design observersrom Fig. 5that while the shape of the faultis reproduced almost
for each of the two measurements as showhkim 1 and the perfectly, the bias in the residuals results can be misinterpreted
eigenvalues of the closed loop observers are placéd-@i85, asaresponse to astep faultin the sensor. To quantify the effect of
—6.86,—6.87}. The observer gain calculated for a measurementincertainty on fault detection, simulations of the fault diagnosis

1.55E+ 3
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Table 1
Monte Carlo simulation (with model uncertainty)
Scenarios Thresholds
Luenberger observer with model uncertainty Presented approach with model uncertainty
1 2 3 4 1 2 3 4
00 3.92 9.51 35.80 67.52 100 100 100 100
01 24.01 8.82 44.98 16.80 100 100 100 96.45
10 55.38 55.81 42.20 39.04 89.92 100 100 100
11 76.25 58.18 44.36 16.32 100 100 100 100
. Reactor temperature fault denoted by “00”, “01”, “10”, and “11” inTable 1stand for no
e ' ' ' ' ' faults in both sensors, no fault in reaction temperature sensor
g and fault in coolant temperature sensor, fault in reaction tem-
?, perature sensor and no fault in coolant temperature sensor, and
g faultin both sensor, respectively. Step faults starting at tim@
P and of magnitude 5 K were added to the sensors. Various thresh-

Temperature (K)

-6

L L L L 1 L
50 100 150 200 250 300 350 400

Coolant temperature fault

50 100 150 200 250 300 350 400
Time (min)

Fig. 3. Reactor and coolant temperature fault signal.

olds are selected to determine whether or not a fault occurred in
either of the sensors and the fault isolation scheme (based upon
a Luenberger observer) is tested with Monte Carlo simulations
where the parametric uncertainty is chosen at random within the
given bounds. To explain this scheme, the scenario identifies the
condition where no faults occur in both sensors for a chosen
thresholdx if the following condition is satisfied:

(a) if time average o% fOTf [re(?)| dt < «, wherer¢(r) denotes
the coolant temperature residual;
(b) if time average o% fOT‘ |r7(t)| dt < o, wherery(¢) denotes

the reactor temperature residual.

scheme based upon the Luenberger observer are performed fwhere [0,7;] is the interval over which the time average is cal-
a sufficiently large number of scenarios (10,000) which includeculated.

a random occurrences of faults in either or both the sensors The criteria used for the other (“01”, “10”, “11") scenar-
as well as randomly chosen parametric uncertainty within théos are chosen accordinglyable 1summarizes the percent-
given intervals in order to determine the overall percentage ofige of successfully identifying the correct scenario using the
successfully identifying one or all the scenarios. The scenariofwlt isolation scheme in the presence of random uncertainties

Temperature (K)

Temperature (K)

Reactor temperature residual

I L I L L L 1
50 100 150 200 250 300 350 400

Coolant temperature residual

50 100 150 200 250 300 350 400
Time (min)

Reactor temperature residual

Temperature (K)

L L L . L .
0 50 100 150 200 250 300 350 400

Coolant temperature residual

—_
4
X
e
3
2
©
@
Q
o
5
[
- . . ‘ . . . ‘
0 50 100 150 200 250 300 350 400
Time (min)

Fig. 4. Reactor and coolant temperature residuals through Luenberger observeig. 5. Reactor and coolant temperature residuals through Luenberger observer
scheme (no model uncertainty).

scheme (with model uncertainty).
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in all the parameters within the range described above. These Reactor temperature residual
results show that the parametric uncertainty can have a strong ' ' ' ' ' '
effect on robustness properties of a fault diagnosis scheme, anc
hence requires techniques that can cope with model uncertainty
The nonlinear fault detection scheme presented in this work
is applied to overcome these limitations. Since the effect of
uncertainty in the activation energy is greater than the other : . . . . \ . \
parameters for fault diagnosis purpose, uncertainty in the activa- 7% 50 100 150 200 250 300 350 \400
tion energy alondT: = {E: =0.94Ess < E < 1.06Ess) is consid- 1o ae Peredd Long ime period?)
eredEss=76534.704 J/mol. However, while the design is solely th
performed based upon uncertainty in this one parameter, the
evaluation of the fault diagnosis scheme will consider uncer-
tainty in all of the parameters to compare it to the Luenberger
observer scheme.

Using the presented technique and applying it to a system : :
with uncertainty in all of the model parameters, it is found that B0 100 150 200 250 300 30 400
estimate of the activation energy converges to its true value Time (min)
after 8.4 m_m in the absence of ser_lsor faults. The assumpt_lolgg. 6. Reactor and coolant temperature residual signal through presented
that there is no initial sensor fault is a reasonable assumptiofneme (with model uncertainty).
since one would like to have a certain level of confidence in
the measurements before a fault diagnosis procedure is invoked.

The coolant and reactor temperature residuals generated by t
proposed fault identification techniques for the fault$ig. 3

Temperature (K)

Coolant temperature residual

Temperature (K)

ions that activation energy affects the system behavior more
than any other parameters, and hence only activation energy is
are presented ifrig. 5. It is apparent that the residuals con- astsumed to charljg_(: W'trt]_ t|rr1té|g. 7srt1kcl)ws_thelp:0;c:f the acti- d
verge to the values of the faults even when the uncertainties jiation energy and its estimate over Ihe simu’ated time span an
Fig. 8 presents the fault signa{r) that is affecting the sensors.

the model parameters are a priori unknown. Additionally, the

location, shape, and magnitude of the faults are correctly recor-1|:he corresponding coolant and reactor temperature residuals

structed and sensor noise is filtered generated by the proposed fault identification technique are

Since the performed simulation has only used uncertaintfhown InFig. 9. The time period during which the parameter
0

in the activation energy, Monte Carlo simulations have a 1009 > |dent|.f|ed within acceptgble limits ranges fram 0-6 min.
These times were determined by comparing the measured out-

success rate for the scenarios considereraliie 1 In order to t and th dicted outout. The first | " iod duri
compare the presented fault detection scheme to the Luenber - and the predicted output. 1he Tirst fong time period during
vhich fault detection and identification is invoked ranges from

observer-based one, Monte Carlo simulations are performed ta . . :
ing uncertainty in all the parametersio = 5%ko, AE = 6%E, 10 to 415 min. The parameter is adapted from 415 to 422 min.

A(AH)=5% AH, andAUA = 5% UA) into account. The results This is followed by another fault detection period ranging from

are summarized iffable 1and clearly show that the proposed td: 4?? tot?82 m'r:]' It can bf? cc;ncluded frd‘:rr? dthatthe fal}fltt.
nonlinear fault detection, isolation, and identification schemadentification scheme IS elfeclive even in the présence ot ime-

performs very well even under the influence of uncertainty in allvarying uncertain parameters. It should be noted that the system
the model parameters. The assumption that only the activation

energy significantly affects the performance of fault diagnosis Activation energy
was a good one, since the fault identification was only designed ' ’ ' ’ ' ‘ ‘ —
for uncertainty in this parameter; nevertheless, accurate fault T eetimated

diagnosis is possible even under the influence of uncertainty in ‘g 1.07} 1
all the other parameters. Additionally, it is inferred that it is an
important task to choose an appropriate threshold for detecting

a fault Fig. 6).

1.06} ]

1.05r

4.2. Fault diagnosis of a reactor with uncertain and
time-varying parameters

Often times processes in chemical industry exhibit a slow
change in model parameters with time, e.g., fouling in heat
transfer equipment, change in activation energy due to cata-
lyst deactivation, etc. In this section, the performance of the ‘ , ‘ . , ‘ , ‘
proposed fault diagnosis scheme is evaluated for the nonisother- ~ © 100200 300 400 500 60O 700 800
mal CSTR problem as introduced in Sectiaf but with model Time (min)
parameters varying with time. It has been shown through simu- Fig. 7. Activation energy change with time.

Activation energy/76534.704 (J/mol)

1.03F 1
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Reactor temperature fault step. Repeatedly performing linearization of the model does not
a2} ' ' ‘ ' ' 1 pose a problem in practice since it is computationally inexpen-
Ef; . sive.
5 Since it is not possible to simultaneously perform parameter
§ -2y 1 estimation and fault detection, these two tasks were implemented
E 4l i at different time scales. The parameters were estimated at peri-
. . ‘ ‘ , . ‘ . . ‘ odic intervals where the fault was either assumed to be zero or
0 100 200 300 400 500 600 700 800 known and constant, whereas the fault detection scheme was
Coolant temperature fault invoked at all times with the exception of the short periods used
S ‘ ‘ ' ' ‘ ' ' ‘ for parameter estimation.
5:7 The performance of the proposed fault diagnosis method was
_‘g evaluated using a numerical example of an exothermic CSTR
g and by performing Monte Carlo simulations on a bounded set of
E arametric uncertainties for a series of faults in both of the avail-
(7
= able measurements. The faults were reconstructed correctly even
0 100 200 300 400 500 600 700 800 in the presence of severe uncertainties in the model parameters
Time (min) and measurement noise.

Fig. 8. Reactor and coolant temperature fault signal.
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